
STATISTICAL MODELING OF THERMAL-RADIATION
TRANSFER IN NATURAL-CONVECTION TURBULENT
DIFFUSION FLAMES. 1. MODEL CONSTRUCTION

A. Yu. Snegirev UDC 536.46:614.841.41

Methods of calculation of radiation transfer, which are used in modeling turbulent diffusion flames, are ana-
lyzed. Realization of the statistical method (Monte Carlo method) in combination with the equations of turbu-
lent flow and combustion of a multicomponent mixture which is formed in combustion of hydrocarbons in air
is presented. A method of calculation of the effective coefficient of absorption for a mixture of absorbing
gases and soot is described. The effect of turbulent temperature fluctuations on the emission of thermal radia-
tion is taken into account.

Introduction. Natural-convection turbulent diffusion flames are formed in fires. The adequacy of modeling of
this phenomenon is to a great extent determined by calculation of thermal-radiation transfer. The model of radiation
transfer must, first of all, correctly describe radiation heat transfer inside the flame and in the flow of combustion
products, since this determines the structure and dynamics of the flame. Moreover, engineering practice requires calcu-
lation of radiation heat fluxes emitted by the flame and incident on the surrounding surfaces. This is essential in mod-
eling of the ignition and combustion of solid and liquid fuels in order to determine the rate of warming-up,
gasification, and thermal degradation of material, delay-time of ignition, and the velocity of propagation of the flame.
At the same time, calculation of thermal-radiation transfer in combustion processes is a complex problem [1].

In modeling of flames, use is traditionally made of the following methods of calculation of thermal-radiation
transfer: the methods of flow and moments [1, 2], the spherical harmonics method [3, 4], the discrete transfer method
[5], the finite volume method, [6], and the discrete ordinate method [7]. All of the above methods, except for the
spherical-harmonics method, which is also called the diffusion method, are intended for the approximate solution of the
equation of radiation transfer along a fixed set of directions in space, which correspond to a set of segments into
which the whole solid angle is split.

The presence of the fixed spatial directions along which radiation is transferred leads to the fact that the re-
sults of the calculation are very sensitive to their quantity. The error of digitization of the solid angle (beam effect)
becomes particularly appreciable in the case where calculation of the heat flux emitted by a local source and incident
on a remote surface is required (see, e.g., [8, 9]). An increase in the number of directions of radiation transfer can fail
from the computational viewpoint, since it is rather difficult to adapt their selection to the problem under considera-
tion, especially in an unsteady process.

The diffusion method presupposes the isotropic distribution of radiation intensity over the solid angle, which
results in an elliptic equation for the radiation-energy density. However, the assumption of the angular isotropy of the
radiation intensity restricts the use of the diffusion method, which, in particular, can lead to appreciable errors in cal-
culation of flows incident on remote surfaces if the considered medium is strongly nonuniform (e.g., if the radiation
source is surrounded by translucent air). Moreover, the elliptic equations of the diffusion method involve the coeffi-
cient of diffusion, which is in inverse proportion to the coefficient of absorption. In the above-noted case of the strong
nonuniformity of the medium, the coefficient of diffusion changes in space by several orders of magnitude and has
large gradients on interfaces. This noticeably deteriorates the convergence of numerical methods which have been de-
veloped for fast solution of elliptic equations with smooth coefficients of diffusion.

The employment of the statistical approach (see [4, 10] and others) is a natural way to overcome the above
difficulties. This approach does not employ splitting of the solid angle and is not aimed at solving the equation of ra-
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diation transfer — it implements the idea underlying the derivation of this equation. Because of the random and con-
stantly changing selection of the directions of radiation transfer, none of the spatial directions is given preference. The
statistical method can pliably be adapted to this type of problem; therefore, in calculations of radiation heat transfer, it
is often used as the standard method. We note that it was successfully used in modeling of fireballs [11, 12]; however,
it is assumed to be expensive and is least often used in modeling of combustion.

This series of works is aimed at demonstrating the advantages and computational efficiency of the statistical
method (Monte Carlo method) of calculation of radiation transfer in modeling of the combustion in flames of hydro-
carbon fuels in air. In what follows, we give a description of the statistical method simultaneously with the models of
turbulence, combustion, and radiation properties of radiating gases and soot. An algorithm of approximate account for
the effect of turbulent fluctuations on the emission of thermal radiation is presented.

Modeling of Turbulence and Combustion. The suggested model is based on the system of Navier–Stokes
equations of a multicomponent compressible reacting gas, which is averaged according to Favre [13]. The continuity
equations, the equations of component transfer, and the equations of motion and energy have the form
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We considered a multicomponent mixture of gases (fuel, O2, CO2, H2O, N2, CO) and soot (C). The dependence of the
isobaric heat capacity of the components on the temperature was approximated by polynomials of second order. For
the considered substantially subsonic flow, the density of the gas mixture was determined from the equation of state

P = RρT  ∑ 

α≠C

 
Yα
Mα

 , (5)

where the total pressure P was assumed to be equal to atmospheric pressure. To close the system of averaged equa-
tions we used the k–ε model. In the equations of transfer of the turbulence kinetic energy k and the rate of its dissi-
pation ε
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the generation of turbulence due to the shear stresses and the buoyancy force is calculated as follows:
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The eddy viscosity is found from the Kolmogorov–Prandtl formula:

µt = Cµ ρ 
k

2

ε
 .

In the calculations, we used the constants Cµ = 0.09, Cε1 = 1.30, Cε2 = 1.92, Cε3 = 1.0, σk = 1.0, σε = 1.3, Prt =
0.7, and Sct = 0.7.

It is known [14, 15] that the standard k–ε model of turbulence does not give a qualitative description of flow
in the region adjacent to the fuel surface where the flow is not fully turbulent. Moreover, this model does not allow
adequate representation of the width of a round jet [16, 17] or an ascending torch [18–20]. This manifests itself as the
overestimation of the temperature and velocity on the flow axis and the underestimation of its cross-section area. Cor-
respondingly, the height and width of the flame are also distorted. To overcome this drawback, a number of modifi-
cations of this class of turbulence models are used. For example, corrections to Eq. (7) for the dissipation rate [16,
17], other sets of constants [18], and also variants of an algebraic model of Reynolds stresses [19, 20] have been sug-
gested. In the present work, with this in mind, we used Cε1 = 1.30 instead of the standard value Cε1 = 1.44, which
made it possible to substantially improve agreement between the calculated and measured quantities.

In modeling of combustion, we took a two-stage successive scheme of fuel oxidation, which involves three re-
actions. In the first stage, fuel decomposes to form water vapor, carbon monoxide, and free carbon in the form of
soot:
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In the second stage, carbon monoxide and soot are oxidized to carbon dioxide:
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1
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 O2 → CO2 , (9)

C + O2 → CO2 . (10)

The rates of the reactions were determined using the model of vortex disintegration [21]
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where the superscripts (1), (2), and (3) correspond to reactions (8), (9), and (10). Oxidation of soot at a temperature
below 600 K was taken to be insignificant. In calculations of a propane flame in air, the best agreement with the
measured concentration profiles of the main components was obtained at CR

(1) = 4.0, CR
(2) = 1.0, and CR

(3) = 2.0. The
right-hand sides in (2) of component transfer, which correspond to reactions (8)–(10), have the form
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The rate of formation of soot was determined using the empirical relation [22]
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The numerical values CS.F = 2.0 sec/m2, n = 3 [22], and ES.F
 ⁄ R = 104 K used in this work allowed obtaining 0.02

to 0.06 g of soot per gram of burned propane in the flow of products, which is in agreement with the data of meas-
urements [23].

Thermal-Radiation Transfer. The problem of modeling thermal-radiation transfer is reduced to determination
of the divergence ∂qj

r ⁄ ∂xj of the radiation flow (the right-hand side of energy equation (4)) at each point of the vol-
ume and the radiation heat flux incident on enclosing surfaces. In this work, thermal-radiation transfer is considered in
the approximation of a gray medium. The calculations showed that if the spectrum-averaged effective coefficient of ab-
sorption Kabs is calculated properly, the suggested model represents both the temperature field in the flame zone and
the emitted radiation flows rather adequately. We note that the scattering of infrared radiation on submicron soot par-
ticles which are formed in hydrocarbon flames is insignificant [1]. It is assumed that solid surfaces emit self-radiation
and reflect incident radiation diffusely.

Thermal-radiation transfer in the assigned direction in a grey nonscattering medium is described by the follow-
ing equation [2–4]:

dI
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 = − Kabs (I − Ib) ,   Ib = 4σT
4
 . (11)

The divergence of the radiation flux necessary for solution of the energy equation (4) has the form
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 Ibdω are found by integration of the intensity with respect to the whole solid angle ω.
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Statistical method. The main method of calculation used in the present work is the statistical method (Monte
Carlo method), which has been applied to radiation emitted by both the internal control volumes and the boundary sur-
face elements of a computational grid. In both cases, the method consists of two stages. In consideration of the inter-
nal emission of radiation, we assume that:

1. Each internal control volume of the computational grid emits a rather large number of "photons" (portions
of energy) the total energy of which is 4KabsσT4∆V∆t. The directions of escape of photons are random. The prob-
ability of selection of each direction is uniformly distributed over the whole solid angle. In emission of a photon, the
substance in the mesh loses a portion of energy which is equal to the energy of the photon.

2. The history of each photon emitted and moving along rectilinear trajectories is tracked. The photon can be
absorbed, and then observation over the photon is stopped and its energy is added to the energy of the substance in
the mesh. The photon can follow the neighboring mesh, where its history is tracked similarly. Finally, it can reach the
region boundary (a solid wall or free escape to an unbounded space). In the latter case, one chooses between the ab-
sorption and the reflection of the photon. The probability of absorption is in proportion to the emissivity of the bound-
ary surface εw. In the case of absorption, the photon energy makes a contribution to the heat flux absorbed by the
surface.

In modeling the emission of radiation by bounding surfaces, we assume that:
1. Each boundary surface element of the computational grid emits a certain rather large number of photons,

the total energy of which is εwσT4∆S∆t. The directions of escape of photons are random. Since a diffusely radiating
surface is taken, the probability selection of each direction is uniformly distributed over half of the solid angle which
faces the interior of the region. In emission of the photon, its energy is subtracted from the radiation energy absorbed
by the surface at this time step.

2. The history of each photon emitted and moving along rectilinear trajectories is tracked in a similar way.
The divergence of the radiation flux is calculated as the difference of the emitted and absorbed energies di-

vided by ∆V∆t.
We present the main features of implementation of the method in this work. Let r0, rϕ, rθ, and rabs be ran-

dom quantities uniformly distributed from 0 to 1. The coordinates of the point of photon escape were taken to be
equiprobable inside each mesh of the grid:

x
0
 = xi−1 + r0 (xi − xi−1) , y

0
 = yj−1 + r0 (yj − yj−1) , z

0
 = zk−1 + r0 (zk − zk−1) ,

where xi, yj, and zk are the coordinates of the boundaries of grid meshes. The direction cosines of the vector ω =
ωxi + ωyj + ωzk are expressed in terms of the angles θ and ϕ shown in Fig. 1:

ωx = sin θ cos ϕ , ωy = sin θ sin ϕ , ωz = cos θ .

The angles θ and ϕ are found from the conditions

cos θ = 2rθ − 1 ,   ϕ = 2πrϕ .

Fig. 1. Angular coordinates of the direction of photon flight.
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The direction of flight and the coordinates of entry of the photon to grid meshes are determined from the equation of
the line

x − x
0

ωx
 = 

y − y
0

ωy
 = 

z − z
0

ωz
 ,

where x0, y0, and z0 are the coordinates of the point of photon emission or the point of appearance of a photon flying
from outside in a given control volume. The path length of the photon till its absorption is

Labs = 
1

Kabs (xi−1 ⁄ 2, yj−1 ⁄ 2, zk−1 ⁄ 2)
 ln 

1
1 − rabs

 .

If Labs turns out to be smaller than the length to the neighboring grid mesh along the direction of flight, the photon
is absorbed.

The number of emitted photons was taken to be in proportion to the difference between the energy emitted at
the point with a temperature T and the energy emitted at the lowest (background) temperature T0:

Nvol i,j,k = Nvol max 
Kabs (T

4
 − T0

4) ∆V

     ∑ 

vol i,j,k

  Kabs (T
4
 − T0

4) ∆V

for the internal control volumes and

Nsurf i,j,k = Nsur f max 
εw (T4

 − T0
4) ∆S

     ∑ 
surf i,j,k

  εw (T4
 − T0

4) ∆S

for the boundary surface elements. Thus, photons are not emitted by a cold medium, which allows one to avoid a non-
physical drop in the temperature below the lowest (background) value. The total number of photons Nvol max +
Nsurf max was varied within 5⋅104–2⋅106 depending on the specific problem. The energy of each photon was
4KabsσT4∆V∆t divided by the number of photons.

Flow method. We note that the flow method is the simplest and thus most widespread method in engineering
practice [2]. In this work, the method was used to compare the results of calculation by it and by the Monte Carlo
method. We recall that the flow method is deduced on the assumption that the intensity of radiation inside each of the
six segments of the solid angle is constant (the axes of each segment are parallel to the coordinate axes x, y, z) [2].
In this method, the density of radiation energy E = (Ex + Ey + Ez)/3 is determined by solution of the one-dimensional
equations
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
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 , (13)

where the plus sign is taken on the left boundary and the minus sign is taken on the right boundary and Eb,w is cal-
culated at the wall temperature. The resultant heat flux to the wall is determined from the left-hand side of (13).

Radiation Properties of the Medium. The effective coefficient of absorption is determined by the contribu-
tion of the gaseous (H2O, CO2, CO) and condensed (soot) combustion products and the unburned fuel.

292



Mixture of CO2 and H2O. When the gray-medium approximation is used, the effective value of the absorption
coefficient in each mesh of the computational grid must be determined so that the value of the radiating capacity is
close to that obtained from a spectral analysis. In this work, to calculate the radiating capacity of the gas volume we
used the model of the weighted sum of gray gases (see [1, 4, 24] and others)

εCO2+H2O =  ∑ 

ig=0

3

 ag,ig
 (T) (1 − exp (kg,ig

 (PCO2
 + PH2O) L)) , (14)

where the gas phase is represented by a set of three gray "gases" (ig = 1, 2, 3) and one transparent (ig = 0) "gas"
with effective properties. The weight factors ag,ig depend on temperature and are approximated by the fourth-degree
polynomials

ag,ig
 (T) =  ∑ 

j=0

3

 bg,ig,j T
 j
 ,   ig = 0, 1, 2, 3 .

The numerical values of the polynomial coefficients bg,ig,j and the absorption coefficients kg,ig are given in [25].
For a mesh of the computational grid with dimensions ∆x, ∆y, and ∆z, a volume ∆V = ∆x∆y∆z, and an area

of the side surface ∆S = 2(∆x∆y + ∆x∆z + ∆y∆z), we took

L = 3.6⋅
∆V

∆S
 = 

1.8
1 ⁄ ∆x + 1 ⁄ ∆y + 1 ⁄ ∆z

 .

The effective value of the absorption coefficient is determined as

Kabs,CO2+H2O
 = 

1
L

 ln 


1
1 − εCO2 + H2O




 . (15)

In the optically transparent approximation, i.e., at low values of 

PCO2

 + PH2O
 L, we have

Kabs,CO2+H2O
 =  ∑ 

ig=0

3

 ag,ig
 (T) kg,ig

 . (16)

Figure 2 gives the dependence of the effective coefficient of absorption on the path length of radiation at pa-
rameters typical of the flame zone (T = 1300 K, YCO2

 = YH2O = 0.1). It is seen that calculation in the optically trans-

Fig. 2. Dependence of the effective coefficient of absorption on the path length
of radiation: 1) calculation from (15); 2) calculation from (16). Kabs, 1/m; L,
m.
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parent approximation (16) is justified only for grids with a characteristic dimension of meshes less than 1 cm. In cal-
culations on larger grids, one must use relation (15). We note that the effective coefficient of absorption decreases sub-
stantially with increase in the radiation path length. As is shown in [26], the effective coefficient of absorption
calculated from formulas (14) and (15) on the basis of the data from [25] is in good agreement with the result of a
more accurate spectral calculation by the wide-band model.

Soot. The absorption coefficient for soot was calculated using the relation

Kabs,s = fV  ∑ 

is=1

2

 as,is
 (T) ks,is

 , (17)

where soot is represented by a combination of two gray "gases" (is = 1, 2). The weight factors as,is depend on tem-
perature and are approximated by the fourth-degree polynomials

as,is
 (T) =  ∑ 

j=0

3

 bs,is,j
 T

 j
 ,   is = 1, 2 .

The numerical values of the polynomial coefficients bs,is,j and the absorption coefficients ks,is are given in [27, 28].
We note that the absorption coefficient for soot can be obtained from the Mie theory in the Rayleigh limit of

small spherical particles. To calculate the spectrum-mean coefficient, in [29] it was suggested to use the following ex-
pression:

Kabs,s = 3.72⋅
C0

C2
 fVT , (18)

where C2 = 1.44⋅10−2 m⋅K and C0 is the empirical constant from the range 2–6 [29] or an even wider one [1], which
depends on the complex refraction index of soot. The following values are given in [1]: C0 = 3.7–7.5 for carbon
flames, C0 = 6.3 for oil, C0 = 4.9 for propane, and C0 = 4.0 for acetylene. One can assure oneself that the data of
[27] approximately correspond to C0 = 5.0 and the data of [28] correspond to C0 = 7.0. By and large, we should
point out an appreciable disagreement of the absorption coefficients suggested by different authors.

CO and unburned fuel. The absorption coefficients Kabs,CO(T, PCO) and Kabs,CH4
(T, PCH4

) for CO and meth-
ane were calculated in the optically transparent approximation from the data of [30].

In view of the shortage of experimental information on the coefficients of absorption of hydrocarbons, it was
assumed that the coefficient of absorption Kabs,fuel(T, Pfuel) of hydrocarbon fuels different from methane equals the co-

Fig. 3. Effective coefficient of absorption of the mixture of CO2, H2O, and
soot: fV = 0 (1) and 2⋅10−6 (2). Numbers in the figure — mass fractions of
CO2 and H2O (they are assumed to be equal). Kabs, 1/m; T, K.
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efficient of absorption of methane Kabs,CH4
(T, PCH4

). Because of the low partial pressure of the fuel vapor, the error
introduced by this assumption is small.

The effective coefficient of absorption of a mixture. The quantity Kabs was calculated as follows:

Kabs = Kabs,CO2+H2O (T, PCO2
, PH2O, L) + Kabs,s (T, fV) + Kabs,CO (T, PCO) + Kabs,fuel (T, Pfuel) . (19)

The dependence of the absorption coefficient on temperature for mixtures of different compositions is shown in Fig. 3.
The coefficients of absorption of the gas components decrease as the temperature increases, whereas the coefficient of
absorption of soot increases linearly. In this case, the resultant dependence for a mixture can have a minimum. In the
region of relatively low temperatures (below 1000 K), the contribution of the gas components to the absorption coef-
ficient is comparable to or exceeds the contribution of the soot. At higher temperatures typical of the flame zone and
at the volume fraction of the aerosol fV = 2⋅10−6, indicated in Fig. 2, the contribution of the soot is substantially
higher.

Account for turbulent fluctuations. In a fluctuating turbulent flow, an averaged equation of radiation transfer
(11) takes on the form

dI
_

ds
 = KabsIb

_____
 − KabsI
_____

 . (20)

Just as in [31], we assume that the effect of local fluctuations of the absorption coefficient Kabs on the trans-

mitted and absorbed radiation is insignificant, i.e., KabsI
_____

 C K
__

absI
_
. On the contrary, in the term for the averaged emis-

sion of radiation of the mixture of gases and soot KabsIb

_____
 which is proportional into KabsT

4
______

, the instantaneous values

are in correlation. As a rule, in calculations it is assumed that KabsT
4

______
 = Kabs

____
 T
__

 4, which means neglect of the turbulent

fluctuations of the temperature and the absorption coefficient. This can lead to an appreciable error if the amplitude of
the fluctuations is rather large. For example, the measurements of [32, 33] showed that the mean amplitude of turbu-
lent fluctuations in a propane flame in air above a burner of diameter of 0.3 m can reach 50% of the mean tempera-
ture. In this case one must take into account the effect of fluctuations on the emission of radiation. We note that the
absorption coefficient depends on the temperature of the medium and its composition (concentration of gas components

and volume fraction of soot). Just as in [34], in the present work, the effect of fluctuations on the quantity KabsT
4

______
 is

considered without regard for the fluctuations of mixture composition.

Resolution of T  = T
__

 + T′ and Kabs = K
__

abs + Kabs
′  into the mean and fluctuation components with subsequent

substitution into KabsT
4

______
 and averaging yields

KabsT
4

______
 = Kabs

____
 T
__

 4
 






1 + 6 

T′2
___

T
__

 2 + 4 
T′3
___

T
__

 3 + 
T′4
___

T
__

 4 + 4 
Kabs
′ T′
_____

Kabs

____
 T
__ + 6 

Kabs
′ T′2
______

Kabs

____
 T
__

 2 + 4 
Kabs
′ T′3
______

Kabs

____
 T
__

 3 + 
Kabs
′ T′4
______

Kabs

____
 T
__

 4







 , (21)

where the bracketed expression reflects the effect of turbulent fluctuations, with terms (from fifth to eighth) accounting
for the correlation of the fluctuations of the absorption coefficient and the temperature. In what follows, we will take

into account only the contribution of correlations of lowest order, i.e., T′
2

___

 and T′Kabs
′

_____
, which should be approximately

expressed in terms of the averaged characteristics of flow.

To calculate T′Kabs
′

_____
 we represent the dependence Kabs(T) = Kabs(T

__
 + T′) in the form of the series

Kabs = Kabs (T
__
) + T′ 

∂Kabs

∂T



 T
__ + 

T′2

2
 
∂2

Kabs

∂T2






 T
__ + ... .

Using this relation, we can calculate the mean value of Kabs

____
 and the fluctuation component Kabs

′  = Kabs − Kabs

____
 of the

absorption coefficient. Multiplication by T′ and subsequent averaging yield
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T′Kabs
′

_____

 = T′2
___

 
∂Kabs

∂T



 T
__ + 

T′3
___

2
 
∂2

Kabs

∂T2   







T
__ + ... C T′2

___

 
∂Kabs

∂T
  







T
__ .

Neglecting the correlations of high order in (21), we have

KabsT
4

______
 = Kabs

____
 T
__

 4
 






1 + C 6 

T′2
___

T
__

 2 



1 + 

2

3
 

T
__

Kabs

____
∂Kabs

∂T



 T
__  










 , (22)

where C is a constant which in the present work was taken to be equal to 4. We note that the derivative ∂Kabs
 ⁄ ∂T

can change its sign depending on the composition and temperature of the mixture. If the volume fraction of soot is
small and the absorption coefficient is determined by the contribution of CO2 and H2O, then ∂Kabs

 ⁄ ∂T < 0 (see Fig.
2, fV = 0). In the case of a large volume fraction of soot and at a rather high temperature, we have ∂Kabs

 ⁄ ∂T > 0 (see
Fig. 2, fV = 2⋅10−6, T > 1500 K). The calculations made within the range of parameters typical of a flame showed that
the role of the term involving ∂Kabs

 ⁄ ∂T is insignificant.

To calculate T′
2

___

 we used the equation of transfer of the root-mean-square fluctuation [13]

∂ρT′2
___

∂t
 + 
∂ρujT

′2
___

∂xj
 = 
∂
∂xj

 



µ + 

µt
Prt




 
∂T′2
___

∂xj
 + 2 

µt

Prt
 
∂T
__

∂xj
 
∂T
__

∂xj
 − Ct ρT′2

___

 
ε
k
 , (23)

where Ct = 2.0. Equation (23) is solved simultaneously with other equations of transfer ((1)–(6)). We note that for the
considered type of flame the flow directly above the burner nozzle or above the fuel surface is not fully turbulent,
since the velocity of both the fuel and the entrained air is small. By virtue of this fact, the assumptions made in deri-
vation of relation (22) can fail. Therefore, the correction to the quantity Kabs

____
 T
__

 4 introduced into (22) was allowed for
only when the local turbulent Reynolds number k2 ⁄ εν exceeded 102.

CONCLUSIONS

We have analyzed the methods of calculation of thermal-radiation transfer which are used in modeling of tur-
bulent diffusion flames. The advantages of the statistical approach to modeling of radiation transfer have been re-
vealed; within the framework of this approach, on the one hand, splitting of the solid angle is not used and no
distinguished directions of radiation transfer arise and, on the other hand, no assumptions on the isotropic nature of
radiation are made.

The suggested implementation of the statistical method in combination with the equations of turbulent flow
and combustion of a multicomponent mixture formed in combustion of hydrocarbons in air has been presented. A de-
scription of the method for calculation of the effective spectrum-averaged coefficient of absorption has been given for
a mixture of absorbing gases and soot. The effect of turbulent temperature fluctuations on the emission of thermal ra-
diation has been taken into account.

The formulated algorithm was used in modeling natural-convection turbulent diffusion flames above a gas
burner and above the surface of a liquid fuel.

NOTATION

CP, heat capacity at constant pressure, J/(kg⋅K); Cµ, Cε1, Cε2, Cε3, σk, σε, and Ct, constants of the turbulence
model; CR

(i), rate constant of the ith reaction; E, radiation-energy density, W/m2; ES.F, CS.F, and n, parameters of the
soot-formation model, J/mole and sec/m2; fV, volume fraction of soot; g, free-fall acceleration, m/sec2; G and GB, gen-
eration of turbulence due to the shear stresses and the buoyancy force respectively, m2/sec3; h, enthalpy of the mass
unit, J/kg; I, radiation intensity, W/(m2⋅sr); s, distance along a certain direction of radiation transfer, m; k, kinetic en-
ergy of turbulence, m2/sec2; Kabs, coefficient of thermal-radiation absorption, 1/m; kg,ig, ag,ig, bg,ig,j, ks,is, as,is, and bs,is,j,
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parameters for calculation of the radiating capacity of the mixture of CO2, H2O, and soot; L, mean path length of ra-
diation, m; Labs, path length of a photon till absorption, m; Mα, molar mass of the α-component, kg/mole; nC, nH, and
nO, number of carbon, hydrogen, and oxygen atoms, respectively, in a fuel molecule; Nvol and Nsurf, number of photons
in the statistical method; Pr, Prandtl number; p, dynamic pressure, Pa; P, total pressure, Pa; Pα, partial pressure of the
α-component, Pa; gr, radiation heat flux, W/m2; r

. (i), rate of the ith reaction, 1/sec; r
.
S.F, rate of formation of soot,

1/sec; R, universal gas constant, J/(mole⋅K); Rα, rate of formation of the α-component due to combustion, 1/sec; sα
(i),

mass stoichiometric coefficients for the α-component in the ith reaction; Sc, Schmidt number; t, time, sec; T, tempera-
ture, K; xj and uj, coordinates and projections of velocity, m and m/sec; x, y, z, spatial coordinates, m; Yα, mass frac-
tion of the α-component, kg/kg; δij, Kronecker symbol; ∆hfα

0 , standard enthalpy of formation of the α-component, J/kg;
∆t, time step, sec; ∆V and ∆S, volume and area of the side surface of the grid mesh, m3 and m2; ∆x, ∆y, and ∆z,
dimensions of the grid mesh, m; ε, dissipation rate of turbulent energy, m2/sec3; εH2O+CO2

, radiating capacity of the
mixture of H2O and CO2; εw, emissivity of the boundary surface; ω, unit vector in the direction of photon flight; i, j,
k, unit vectors of the coordinate system; φ, excess-fuel coefficient; ϕ and θ, polar and azimuth angles, rad; χC, carbon
fraction in a fuel molecule expended on forming soot; µ, dynamic viscosity, Pa⋅sec; ρ, density, kg/m3; σ, Stefan–
Boltzmann constant, W/(m2⋅K4); τij, components of the stress tensor, Pa; ω, solid angle, sr. Sub- and superscripts: abs,
absorption; b, black body; B, buoyancy; fuel, fuel; g, gas; (i), reaction number; i, j, and k, number of the grid mesh;
R, reaction; r, radiation; S.F, soot formation; s, soot; surf, boundary surface element; t, turbulent; vol, internal control
volume; w, solid wall; α, mixture component; 0, surrounding air; overbar, time-averaging of fluctuating quantities;
prime, fluctuations; f, flame zone; max, maximum.
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